Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.
نویسندگان
چکیده
The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.
منابع مشابه
Experimental exploration of the fabrication of GaN microdome arrays based on a self- assembled approach
The formation of large scale, highly uniform and controllable GaN microdome arrays based on a self-assembled low cost method was investigated. The deposition of a large area, hexagonally close-packed SiO2 microsphere monolayer on top of the III-nitride semiconductor using the dip-coating method was optimized, which leads to surface coverage of 87% of SiO2 on GaN (ideal close-packed microsphere ...
متن کاملEffect of packing density and packing geometry on light extraction of III-nitride light-emitting diodes with microsphere arrays
The finite-difference time-domain method was employed to calculate light extraction efficiency of thin-film flip-chip InGaN/GaN quantum well light-emitting diodes (LEDs) with TiO2 microsphere arrays. The extraction efficiency for LEDs with microsphere arrays was investigated by focusing on the effect of the packing density, packing configuration, and diameter-to-period ratio. The comparison stu...
متن کاملPhosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN
Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template f...
متن کاملEffects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes
Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...
متن کاملAspect ratio engineering of microlens arrays in thin-film flip-chip light-emitting diodes.
Light extraction efficiency of thin-film flip-chip InGaN-based light-emitting diodes (LEDs) with a TiO2 microlens arrays was calculated by employing the finite-difference time-domain method. The microlens arrays, formed by embedding hexagonal close-packed TiO2 sphere arrays in a polystyrene (PS) layer, were placed on top of the InGaN LED to serve as an intermediate medium for light extraction. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 Suppl 5 شماره
صفحات -
تاریخ انتشار 2012